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ABSTRACT
The results of Chen and Saffman, showing that periodic gravity waves in

water of infinite depth are not unique, are generalized for waves in water of

finite depth. Some new types of waves are discovered and discussed.
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SIGNIFICANCE AND EXPLANATION

R

In a recent paper Chen and Saffman [1] showed that periodic gravity waves
in water of infinite depth are not unique. They presented explicit
computations for new families of waves which they termed irregular waves.

HQ a_u‘f/\u.f
In the present paper yé give conclusive numerical evidence that periodic

gravity waves in water of arbitrary uniform depth are not unique. Explicit

computations of irregular waves in water of finite depth are presented.
' +hty TS
In addition, ye‘ show that Chen and Saffman's [1] bifurcation point for an
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irregular wave of class 2 is not unique.'f o_\x_r\iésults suggest the existence of
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an infinite number of such bifurcation points.
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SOME NEW GRAVITY WAVES IN WATER
OF FINITE DEPTH

Jean-Marc Vandon~aroeck.
I. Introduction

In a recent paper Chen and Saffman [1] gave conclusive numerical evidence
that gravity waves in water of infinite depth are not unique. They showed
that the classical Stokes' waves can bifurcate at large amplitude into new
families of waves which they termed irregular waves. They labelled the
irregular waves with a “"class number". The class number gives the number of
crests per wavelength.

Chen and Saffman [1] presented detailed computations for irregular waves
of class 2 and 3. Further results dealing with irregular waves in water of
infinite depth have been obtained by Saffman [2] and Olfe and Rottman [3].

In this paper we present explicit computations for irregular waves of
class 2 in water of finite depth. We show that Stokes' waves in water of
arbitrary uniform depth can bifurcate at large amplitude into irregular waves
of class 2. The branches emanating from the bifurcation points are computed
for various values of the depth.

Chen and Saffman [1] found that Stokes' waves in water of infinite depth
bifurcate at % ~ 0.13 into irregular waves of class 2. Here h 1is the wave
height and A is the wave length.

We show that this bifurcation point is not unique. We found explicitly
another bifurcation point at % ~ 0.140. Our results suggest the existence of

an infinite number of such bifurcation points.
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As the depth tends to zero the classical Stokes' wave and the irregular
waves approach the same solitary wave configuration. Therefore the non-
uniqueness of periodic gravity waves does not imply the non-uniqueness of
solitary waves.

The problem is formulated in section 2. The numerical procedure is

outlined in section 3 and the results are discussed in section 4.
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II. Pormulation

We consider two-dimensional periodic waves of wavelength A and phase
velocity ¢ propagating under the influence of gravity g over a horizontal
bottom. We choose a frame of reference in which the waves are steady as is
the fluid motion which is assumed to be potential. The x-axis is parallel to
the bottom and the y-axis is a line of symmetry of the wave. We make the
variables dimensionless by referring them to the velocity ¢ and the length
A.

We choose the complex potential £ = ¢ + iy as the independent
variable. Let the stream function ¢ assume the values O and -Q on the
free-surface and on the bottom respectively. We define the undisturbed fluid
depth by

a=2 . T}
e

We denote by x(¢) and y(¢) the values of x and y on the free-

surface Y = 0. Pollowing Vanden-Broeck and Schwartz [4] we derive the

following integro-differential relations between x'(¢) and y'(¢):

x'(¢) -1 = -];/2 y'(s)[cotg x(s=-¢) + cotg w(s+d)]lds

[x'(s)-1][t:-coc 2%(s~¢)] - y'(s)sin 2x(s-9$)

2 1/2

+ 2 | ds (2)
0o 14 r: - 2:2 cos 2n(s-¢)
0
2 12 [x'(-)-m::- cos 2n(s+9)] - y'(s)sin 2n(s+¢)
+ 2r° fo 2 2 das
1+ T, - 2x, cos 2u(s+¢)
0
Lo 1 - -
y(¢) ta ! 2 11 =0 . (3)

B (912 + [y (9]

Here )y and r

0 are defined by
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= 2nc2/gA (4)

£, = exp(-2wa/A] . (5)

The choice of the Bernoulli constant in (3) fixes the origin of y as the

level of the free surface at which the velocity is equal to u1/2.

In addition to the parameters r, and u, a wave is characterized by a

0 d

third parameter which is a measure of the wave steepness. We choose this

parameter to be
4lyc

€= (6)

where y. is the elevation of the crests of the wave. For the highest wave,

the velocity at the crest vanishes. Thus from (3), %; so € =1 for
the highest wave. In general, € ranges between 0 and 1.

For given values of r, and € (2) and (3) define a nonlinear integro-
differential equation for the unknown functions x(¢), y(¢) and the constant

H. Vanden-Broeck and Schwartz (4] derived an efficient numerical procedure to

golve this equation. In the next section we use their procedure to compute

irreqular waves of class 2.




III. Numerical procedure
Following Chen and Saffman (1) we define a new variable § by the

transformation

¢ = 298 - f gin 2mB . (7
Here n is the number of crests per wavelength. Thus we choogse n = 1 for
classical Stokes' waves and n = 2 for irregular waves of class 2. Next we
define the mesh points

B = [(I“)/N]' I = 1,..-,“"’1 . (8)

I
The parameter a in (7) is used to concentrate mesh points near the crest.
The clogest «a is to one, the greater the concentration. For steep waves we
chose a = 0.999.

Following Vanden-Broeck and Schwarts [4] we discretize (2) and (3). For

given values of r, and € we obtain a gsystem of N nonlinear algebraic

0
I=2,...,N and u. This

equations for the N unknowns Yo = (§§
I

B-BI
system may be written symbolically as

F (Y ,ou-,Y ri u) = o I = 1,...,“ .
I 82 BN

Vanden-Broeck and Schwartz [4] solved the system (9) by Newton's
iterations. They chose n = 1 in (7) and obtain accurate solutions for
classical Stokes' waves. In order to find bifurcation points for irregular
waves of class 2, we repeated Vanden-Broeck and Schwartz's calculations with
n =2 in (7). No significant differences were found between the results
with n = 1 and those with n = 2,

The bifurcation points were found by monitoring the sign of the Jacobian
of the system (9). The new branches emanating from these bifurcation points
were computed by using Keller's (5] method. The details of our numerical
procedure follow closely the scheme described by Chen and Saffman [1].

Therefore, they will not be repeated here.
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IV. Discussion of the results

The procedures outline in section 3 was used to compute irregqular waves
of class 2 for various values of r, and €.
In Figures 1 and 2 we present typical profiles of irregular waves of

class 2 for r2 = 0.4 and rz = 0.,8. For r, small, the profiles are very

0 0 0
similar to those presented by Chen and Saffman [1). &As ry increases the
wave develops narrow crests and broad troughs. This behavior appears clearly
in the profiles of Figures 1 and 2.

In Figures 3 - S we show graphs of T = (u-uo)/uo against €. Here u,

is the value of y for infinitesimal waves, i.e.
- T
2(1+r;)

. (10)
The solid curves correspond to the classical Stokes' waves with n = 2. Chen
and saffman (1] termed these waves "reqular waves of class 2". The dashed
curves correspond to the irregular waves of class 2.

For water of infinite depth, i.e. rg = 0, the regular waves of class 2
can bifurcate into an irregular wave of class 2 at € ~ 0.88. This is the
bifurcation point discovered by Chen and Saffman [1]. The branch emanating
from that point is in good agreement with the numerical results of Chen and
saffman [1].

We found that Chen and Saffman's bifurcation point is not unique. We
discovered another bifurcation at € ~ 0,993. The new branch emanating from
that point is shown in Figure 3.

As the depth tends to zero, i.e. as r, + 1, the value of ¢

corresponding to Chen and Saffman’s bifurcation point approaches the value of

€ for which Tt is maximum (see Figure 3 ~ 5). Furthermore the distance

between the dashed curves (irregular waves of class 2) and the solid curves




(xegular waves of class 2) tends to zero as rg + 1. Therefore the non-

uniqueness of periodic gravity waves does not imply the non-uniqueness of

solitary waves.

This result can be interpreted in the following way. Solitary waves are

the limit of periodic waves as % + @, Therefore a solitary provides a good

approximation for a periodic wave with % = L where L > 1. The existence

of a value of € for which T is maximum implies that two solitary waves of

different amplitude € can travel at the same speed t. Two such waves can

be used to approximate an irregular wave of class 2 with % = 2L. This

explains why the dashed curves and the solid curves of Figure 2 coincide in

the limit as ro + 1.

Longuet-Higgins and Fox [6] showed that u oscillates infinitely often

ag € + 1. As Iy * i, our new bifurcation point approaches the value of €

corresponding to the first minimum as .

We were not able to compute waves past the firgt minimum of 7T1. However

it seems likely that a third bifurcation point exists between the first

minimum and the second maximum of <T. As Ty * 1, this bifurcation point

should approach the value of € corresponding to the second maximum of T.

We suggest that an infinite number of such bifurcation points exist. Aas

T + 1, these bifurcation points approach the values of ¢ corresponding to

the local minima and maxima of T.
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Fi ggre 1.

Figure 2.

Figure 3.

Figure 4.
Figure 5.

Captions for Figures

Free surface profile of an irregqgular wave of class 2 for
2

to = 0.4 and € = 0.997.
Same as Figure 1 with rg = 0,8 and € = 0.984.

Values of T versus € for rﬁ = 0. The solid curve

corresponds to regular waves of class 2 and the dashed curves to
irreqular waves of class 2.

Same as Figure 3 with r, = 0.4.

oNOw

Same as Figure 3 with r, = 0.8.

S—




m
(2]

REFERENCES

B. Chen and P. G. Saffman, Studies in Appl. Math. 62, 1 (1980).

P. G. Saffman, J. Fluid Mech. 101, 567 (1980).

[3) D. B. Olfe and J. W. Rottman, J. Fluid Mech. 100, 801 (1980). i
[4] J.-M. Vanden-Broeck and L. W. Schwartz, Phys. Fluids, 22, 1868 (1979).
[S5] H. B. Keller, Applications of Bifurcation Theory, 359, Academic Press
(1977).
{6] M. S. Longuet-Higgins and M. J. H. Fox, J. Fluid Mech. B85, 769 (1978).
y
JIMV/jvs

-14-




SECUMITY CLASSIFICATION OF THIS PAGE (When Deta Bntered)
REPORT DOCUMENTATION PAGE Bsrwmm:om
V. REPGRT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER |
#2499 bar29 U
4. TITLE (and Subtitle) 8. TYPE GF REPORY & PERIOD COVERED
. . .. Summary Report - no specific ,
Some New Gravity Waves in Water of Finite Depth reporting period g
6. PERFORMING ORG. REPORT NUMBER '
i
7. AUTHOR(®) 8. CONTRACT OR GRANT NUMBER(s) | -‘
!
Jean-Marc Vanden-Broeck DAAG29-80-C-0041
9. PERFORMING ORGANIZATION NAME AND ADDRESS . ::ggQA:;W ;
Mathematics Research Center, University of Work Unit Number 2 - 3
610 Walnut Street Wisconsin Physical Mathematics
Madison, Wisconsin 53706 i
1. CONTROLLHIG OFFICE NAME AND ADODRESS 12. REPORT DATE 1
U. S. Army Research Office March 1983
P.O. Box 12211 13. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 14
| . MONITORING AGENCY NAME & ADDRESS((! ditforent from Controlling Office) 18. SECURITY CLASS. (of this report)
UNCLASSIFIED
Wﬁkﬁrglcuﬁonlm
T6. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i diffecent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side It y and | ity by block number)

gravity waves, bifurcation

20. ABSTRACT (Continue on reverse side it necessary and identify by block number)

The results of Chen and Saffman, showing that periodic gravity waves in
water of infinite depth are not unique, are generalized for waves in water
of finite depth. Some new types of waves are discovered and discussed.

DD , 5", 1473  coivion oF 1 nov &8 18 OBsOLETS UNCLASSIFIED j ,

SECURITY CLASSIPICATION OF THIS PAGE (When Deta Entered)

L T PO Y P A, P em s e .
DI LR S e deem SR S T N i A 1 < . it - e st e e a ~
’ SO A S - i A

"

wmhikine s SN RN a1 o cosinb Bl b PP s Y am o At ko s,




